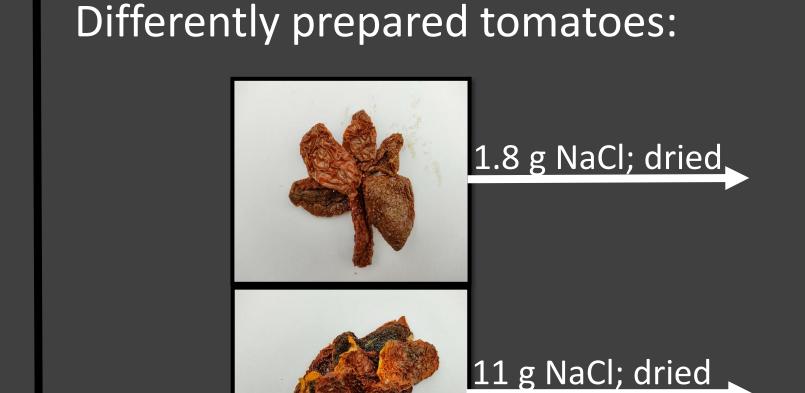
OSL STUDY ON IRRADIATED AND NON-IRRADIATED DRIED TOMATOES AS INGREDIENT IN THE MEDITERRANEAN DIET


Matea Dragoš^a, Monica Vidotto^a, Nadica Maltar-Strmečki^{a*} Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia amdragos@irb.hr,*nstrm@irb.hr

1. Introduction

Tomatoes, as the main ingredient of the Mediterranean diet, are associated with healthy protection as is the reduced risk of some cancers and other diseases due to a significant content of antioxidants, especially carotenoids (lycopene and betacarotene), ascorbic acid and phenols, which play a role in inhibiting free radicals. [1] The main objective of this study was to compare the Optically Stimulated Luminescence (OSL) response of irradiated (10 kGy, as regulated by [2,3]), and nonirradiated tomato for two types of stimulation: IR (infrared, $\lambda = 890$ nm) and BL (blue light, $\lambda = 470$ nm).

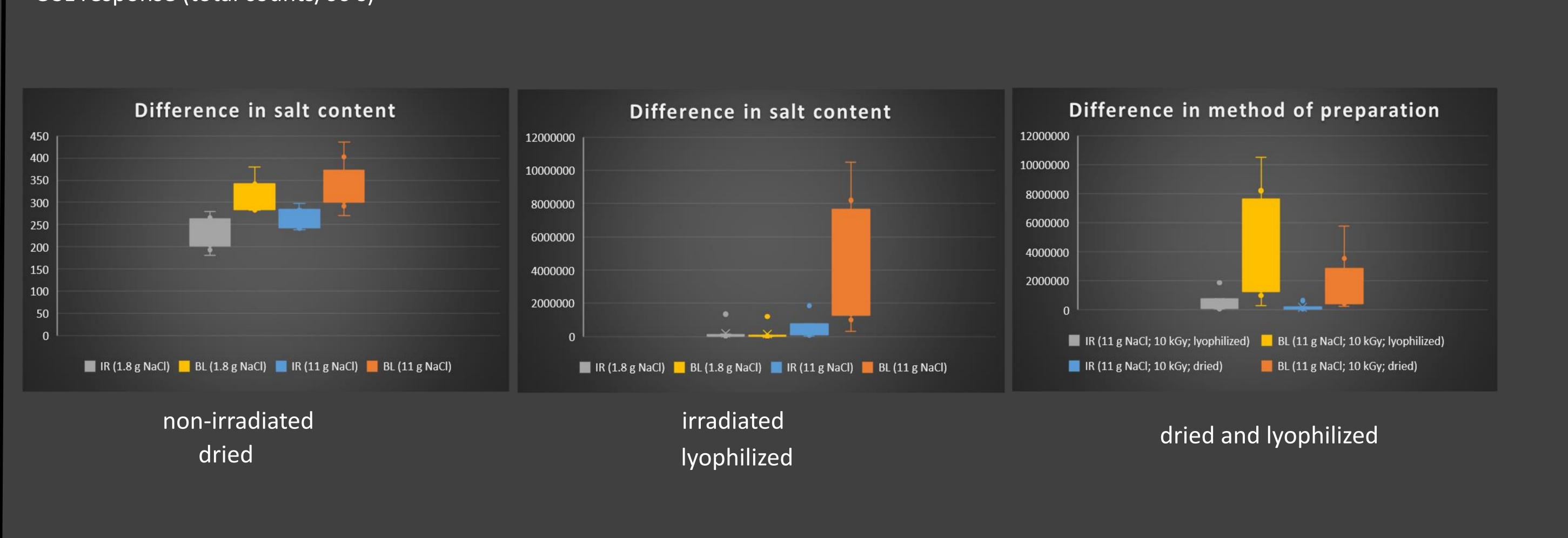
$\lambda = 470 \text{ nm}$ red

2. Methods

1.8 g NaCl; lyophilized

11 g NaCl; lyophilized

Irradiated (Total dose of 10 kGy obtained by ⁶⁰Co γ-rays at room temperature in the presence of air in a home-built panoramic irradiator in the Radiation Chemistry and Dosimetry Laboratory at RBI). [4]


Non-irradiated

SUERC portable OSL reader 2 different stimulations: infrared and blue light

3. Results

OSL response (total counts/60 s)

4. Conclusion

- samples of lyophilized tomatoes with higher salt content and blue light stimulation is far more promising for food as of reduces the limit of detection
- blue light give a stronger signal than infrared stimulation

5. References

- [1] Gomez-Romero, M., Arraez-Roman, D., Segura-Carretero, A., Fernandez-Gutierrez, A., Analytical determination of antioxidants in tomato: Typical components of the Mediterranean diet, J. Sep. Sci. **2006**, 30, 452.
- [2] Pravilnik o hrani podvrgnutoj ionizirajućem zračenju (NN, br. 38/08)
- [3] EN 13751:2002, Detection of irradiated food by pulsed Photostimulated Luminescence screening method
- [4] Majer, M.; Roguljić, M.; Knežević, Ž.; Starodumov, A.; Ferenček, D.; Brigljević, V.; Mihaljević, B., Applied Radiation and Isotopes 2019, 154, 108824.

6. Acknowledgement

The authors acknowledge that this work has been fully supported by H2020 PRIMA Initiatives as part of the project No. 2032 Functionalized Tomato Products (FunTomP).

